High throughput phenotyping of root growth dynamics, lateral root formation, root architecture and root hair development enabled by PlaRoM
نویسندگان
چکیده
Plant organ phenotyping by non-invasive video imaging techniques provides a powerful tool to assess physiological traits and biomass production. We describe here a range of applications of a recently developed plant root monitoring platform (PlaRoM). PlaRoM consists of an imaging platform and a root extension profiling software application. This platform has been developed for multi parallel recordings of root growth phenotypes of up to 50 individual seedlings over several days, with high spatial and temporal resolution. PlaRoM can investigate root extension profiles of different genotypes in various growth conditions (e.g. light protocol, temperature, growth media). In particular, we present primary root growth kinetics that was collected over several days. Furthermore, addition of 0.01% sucrose to the growth medium provided sufficient carbohydrates to maintain reduced growth rates in extended nights. Further analysis of records obtained from the imaging platform revealed that lateral root development exhibits similar growth kinetics to the primary root, but that root hairs develop in a faster rate. The compatibility of PlaRoMwith currently accessible software packages for studying root architecture will be discussed.We are aiming for a global application of our collected root images to analytical tools provided in remote locations. Additional keywords: Arabidopsis, growth profiling, video imaging.
منابع مشابه
A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica rapa genotypes
The potential exists to breed for root system architectures that optimize resource acquisition. However, this requires the ability to screen root system development quantitatively, with high resolution, in as natural an environment as possible, with high throughput. This paper describes the construction of a low-cost, high-resolution root phenotyping platform, requiring no sophisticated equipme...
متن کاملRoot architecture simulation improves the inference from seedling root phenotyping towards mature root systems
Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii...
متن کاملRecent Advances in Understanding the Molecular Mechanisms Regulating the Root System Response to Phosphate Deficiency in Arabidopsis
Phosphorus (P) is an essential macronutrient for plant growth and development. Inorganic phosphate (Pi) is the major form of P taken up from the soil by plant roots. It is well established that under Pi deficiency condition, plant roots undergo striking morphological changes; mainly a reduction in primary root length while increase in lateral root length as well as root hair length and density....
متن کاملPseudomonas fluorescent and its ability to promote root formation of olive microshoots
Root formation and root architecture of olive microshoots, inoculated or not with Pseudomonas fluorescent P19 or P21, were evaluated by measuring of length and the numbers of adventitious and lateral roots. Three-four nodal in vitro shoots were treated with different population densities (0, 105, 108 CFUml-1) of rhizobacteria. The density of 108 CFUmgl-1 induced almost two times increase in num...
متن کاملLocalized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana.
Morphogenesis in plants is characterized by highly regulated cell enlargement. However, the mechanisms controlling and localizing regions of growth remain essentially unknown. Root hair formation involves the induction of a localized cell expansion in the lateral wall of a root epidermal cell. This expanded region then enters a second phase of localized growth called tip growth. Root hair forma...
متن کامل